

 Report URI

Penetration Testing Report

2710

Report URI & API

29/11/2022

Author: Paul Ritchie

26a The Downs, Altrincham, Cheshire, WA14 2PU

Tel: +44 (0)161 233 0100

Web: www.pentest.co.uk

COPYRIGHT PENTEST LIMITED 2021 ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED,
STORED IN A RETRIEVAL SYSTEM, OR TRANSMITTED IN ANY FORM, OR BY ANY MEANS, ELECTRONIC, MECHANICAL,

PHOTOCOPYING, RECORDING OR OTHERWISE, WITHOUT THE PRIOR WRITTEN PERMISSION OF THE COPYRIGHT HOLDER.

http://www.pentest.co.uk/

 Confidential

 2710 - Report URI & API

 <CustomerNameLong>

 2

 Confidential

 2710 - Report URI & API

 2

Table of Contents

1 Document Revision History.. 3

2 Introduction .. 4

3 Executive Summary ... 6

4 Recommended Actions .. 10

5 Technical Findings ... 11

5.1 Vulnerabilities in Outdated Software Detected ... 12

5.2 Account Enumeration .. 14

5.3 Server Side Request Forgery (SSRF) .. 16

6 Additional Information .. 21

Appendix A. Testing Notes .. 28

A1. Source Code Analysis ... 28

A2. Dependency Checking .. 28

A3. GitHub Repository Secrets Hunting .. 29

A4. Bug Hunting in Pem Decoder [Not Vulnerable] .. 30

A5. Automated Application Scanning Challenges ... 31

 Confidential

 2710 - Report URI & API

 <CustomerNameLong>

 3

 Confidential

 2710 - Report URI & API

 3

1 Document Revision History

Name Date Version Comment

Paul Ritchie 28/11/2022 0.1 Initial Document

Kyle Fleming 29/11/2022 0.2 QA by senior consultant.

Paul Ritchie 29/11/2022 1.0 Final Draft

 Confidential

 2710 - Report URI & API

 <CustomerNameLong>

 4

 Confidential

 2710 - Report URI & API

 4

2 Introduction

Report URI engaged Pentest Limited to undertake this project. This was to gain independent

assurance that security controls are in-line with industry best practices.

Report URI was created to take the pain out of monitoring security policies like CSP and other

modern security features. When you can easily monitor what's happening on your site in real time

you react faster and more efficiently, allowing you to rectify issues without your users ever having to

tell you. The Report URI platform is constantly evolving to help better protect your users.

Report URI are the best real-time monitoring platform for cutting edge web standards. Their

experience, focus and exposure allow them to take the hassle out of collecting, processing, and

understanding reports, giving you just the information you need.

Report URI have indicated the need for a security test, of their ‘Report URI’ application to identify

vulnerabilities to attacks that could be launched across a computer network and to provide security

assurances regarding their systems. Such a test will allow Report URI to undertake remediation

efforts and increase their overall security posture.

2.1 Scope & Duration

This assessment included the following phases of work:

• Phase 1 – Web application and API assessment of the Report URI application

The duration included 5 days effort (including reporting). Work commenced on 21/11/2022 and

concluded on 25/11/2022.

2.2 Scenarios Included

• Black-box assessment – simulating the threat of an Internet based attacker with no

knowledge of the platform. This would locate unauthenticated access to services and find

issues within the supporting infrastructure.

• Rogue user – simulating the threat of an authenticated user. This included access to paid

and free tier accounts.

• White-box assessment – source code, code repositories, and access to Report URI staff

was provided. This information is not available to Internet based attacker and helps to find

defence-in-depth recommendations to further enhance a security posture.

 Confidential

 2710 - Report URI & API

 <CustomerNameLong>

 5

 Confidential

 2710 - Report URI & API

 5

2.3 Target(s)

The target included “*.report-uri.com” because users can generate their own subdomains. While

some domains are reserved the following services are generally part of the target platform for all

users:

• https://report-uri.com

• https://cdn.report-uri.com

https://report-uri.com/
https://cdn.report-uri.com/

 Confidential

 2710 - Report URI & API

 <CustomerNameLong>

 6

 Confidential

 2710 - Report URI & API

 6

3 Executive Summary

The targets were secure against many common vulnerabilities and presented a mature defence-in-

depth security posture. In part this is because this is the third iteration of penetration testing which

has helped to improve that posture. However, this is also because Report URI have demonstrated a

willingness and culture to develop and deploy their solutions with a focus on security.

Report URI remained in contact throughout the engagement and provided all additional information

that was requested. This collaboration enabled the consultant to deliver the highest quality

assessment possible within the available time.

The following findings from previous tests were still applicable:

• Account Enumeration (Timing Difference)

• Excessive Session Timeout (24-hour validity)

Their risks have been accepted previously and there was no value in adding them again.

This report details three findings as summarised below:

• Vulnerabilities in Outdated Software Detected (Low Risk) – one outdated JavaScript

library was located. This contained a known Cross-Site Scripting (XSS) vulnerability. Report

URI did not use the vulnerable functionality so was not vulnerable to that XSS. A GitHub

workflow already existed to detect outdated JavaScript libraries. This is the recommended

approach to prevent outdated JavaScript libraries long term.

• Account Enumeration (Low Risk) – previous reports raised Account Enumeration in two

other features of the site. A new instance was reported in the registration process. If a user

was not previously registered, then they are automatically authenticated and redirected to

“/account”. Exploitation of this was already protected from automation by a CAPTCHA

challenge and rate-limiting.

An attacker with sufficient resources could pay humans to solve the CAPTCHAs and bypass

the rate limiting. Doing so would allow the attacker to gather a list of valid usernames (email

addresses) to permit Phishing and password guessing attacks.

Due to the cost of exploiting it and the low value of that data the consultant doing so was

considered extremely unlikely.

• Server Side Request Forgery (SSRF) (Informational) – Report URI offers several free

tools which allow an attacker to control a URL that is requested by the backend server. These

are available without registration, some do not have CSRF tokens, and none implement

CAPTCHA technology. All of these are protected by rate-limiting technologies which would

discourage heavily automated use.

No access to internal resources was found on this occasion. There remains a potential that

Report URI’s service could be abused to send DoS traffic to third party hosts. This may

impact Report URI’s reputation if done.

No significant impacts were detected during this iteration of penetration testing.

 Confidential

 2710 - Report URI & API

 <CustomerNameLong>

 7

 Confidential

 2710 - Report URI & API

 7

3.1 Next Steps

A complete writeup of every issue is available in the body of this report. It includes required steps to

confirm and replicate each issue, along with recommended remedial actions. Pentest recommend

taking time to review the findings before arranging a triage meeting to determine the order of priority

for remedial work. As a rule of thumb:

• Critical Risk Items – Address these immediately.

• High Risk Items – Address these as soon as possible after any Critical Risks.

• Medium Risk Items – Plan to address these within 3 months of discovery.

• Low and Info Risk Items – Track these within a risk register and discuss remediation versus

acceptance.

If recommendations within this report are followed Pentest believe that the target’s security posture

will improve.

3.2 Caveats

Pentest provides no warranty that the target(s) are now free from other defects. Security is an ever-

evolving field and consultancy is based on the opinions of the consultant, their understanding of the

goals of Report URI as well as their individual experience.

The findings of this project are based on a time-limited assessment and by necessity can only focus

on approved targets which are in scope. An attacker would not be constrained by either time or scope

limits and could circumvent controls which are impractical to assess via structured penetration

testing.

To appropriately secure assets Pentest encourage a cyclical approach to assessment. Each cycle

should include:

• Comprehensive Assessment – where a full list of findings is produced with the widest

scope possible.

• Focused Verification Testing – where solutions to the initial assessment’s findings are

verified.

Depending on how important the target is to the concerns of Report URI, Pentest recommend

repeating the cycle every 6-months or 12-months at least.

 Confidential

 2710 - Report URI & API

 <CustomerNameLong>

 8

 Confidential

 2710 - Report URI & API

 8

3.3 Risk Categories & Rationales

Pentest use a simple risk categorisation of each vulnerability to focus the triage process at the risks

which truly matter. The Common Vulnerability Scoring System (CVSS) is an industry standard

formula. It generates a risk score between 0.0 and 10.0.

The table below explains the risk categories and demonstrates rule-of-thumb equivalency with CVSS

scores:

Risk Category CVSS Score Rationales

8.1 – 10.0 Poses a severe risk which is easy to exploit.

Begin the process of remediating immediately

after the issue has been presented.

6.1 – 8.0 Poses a significant risk and can be exploited.

Address these as soon as possible after any

critical risks have been remediated.

4.1 – 6.0 Poses an important risk but may be difficult to

exploit. Pentest recommends remedial work

within 3 months of discovery.

2.1 – 4.0 Poses a minor risk or may be exceedingly

difficult to exploit. Address these over the

long-term during testing cycles

0.0 – 2.0 Loss of sensitive information, or a discussion

point. These are not directly exploitable but

may aid an attacker. Remediate these to

create a true defence-in-depth security

posture,

CVSS is not applicable to all risks. For example, it is incapable of capturing the risk of a “flat network

design”. Experience has told us that this is a “high” risk in most cases.

For this reason, the reader may find vulnerabilities which have no CVSS rating in our reports.

We endeavour to provide the reason for omitting the risk score when that is the case, and to provide

CVSS by default in all applicable cases.

 Confidential

 2710 - Report URI & API

 <CustomerNameLong>

 9

 Confidential

 2710 - Report URI & API

 9

3.4 Visual Summary

Info Low Medium High Critical

Count 1 2 0 0 0

0

1

2

3

Info

Low

Medium

High

Critical

 Confidential

 R2710 - Report URI & API

 10

 Confidential

 2710 - Report URI & API

 <CustomerNameLong>

 10

4 Recommended Actions

ID Vuln Title Recommended Action Pentest Risk Category CVSS

1. Vulnerabilities in Outdated Software

Detected

Investigate why the current process did not trigger

an alert in this case

6.1/Medium

2. Account Enumeration Consider altering the registration flow to remove

manual account enumeration opportunities.

3.7/Low

3. Server Side Request Forgery (SSRF) Consider adding a CAPTCHA challenge to the

tools available when unauthenticated.

0.0/None

 Confidential

 2710 - Report URI & API

 11

5 Technical Findings

The following findings from previous tests that were still applicable:

• Account Enumeration (Timing Difference)

o Though a new instance was reported based simply on response difference.

• Excessive Session Timeout (24-hour validity)

Their risk had been accepted previously and there was no value in adding them again.

 Confidential

 2710 - Report URI & API

 12

5.1 Vulnerabilities in Outdated Software Detected

5.1.1 Background

Software vendors release security updates to provide fixes to vulnerabilities in their software and

missing any of these patches could result in services becoming outdated. Outdated services can

expose a wide range of vulnerabilities, from client-side attacks such as Cross-Site Scripting to server-

side attacks such as Remote Code Execution.

This becomes especially important for software that has become unsupported or obsolete.

Unsupported software will not receive any new security patches when issues are identified. As such,

any affected services utilising obsolete software will remain susceptible to any existing vulnerabilities

and any new exploits that may be discovered in the future.

An abundance of outdated software on a network can also indicate a failure in policy to help ensure

that software present on a network remains up to date and secure.

5.1.2 Details

The Report URI website used an outdated version of “jquery-ui.min.js”. This was confirmed by using

the HTTP request and response below:

Request:

GET /products/ocsp_expect_staple HTTP/2

Host: report-uri.com

Response:

<script src="https://cdn.report-uri.com/libs/jqueryui/1.13.0/jquery-ui.min.js"

nonce="P1Ojek7XVIV82SxiH91HBJG5" integrity="sha256-

WpasVnoho7I5kgTE6i2dy4Ub9B0NuEZz2mWRNZ4nqJE= sha384-

SAXtuPnq/ihP6oe5Dw3x8iGQMVPpLeRT+fbdcAZh3GQdaPXKsfrN/kiuESXeKhR2 sha512-

ENRy1V8cqnDlXErBKUhUvSMMs125WTiikx/2QhNCQ9COACpP/8RsjJmkYfpJqNJgxbeSTLfbZDg+oYY6vIAuAA=="

crossorigin="anonymous">

The yellow highlight shows the URL which included the version number 1.13.0.

This version contained one publicly known vulnerability captured by CVE-2022-31160 (see reference

[3]). The impact of this was Cross-Site Scripting (XSS) if an attacker could control parts of an HTML

page on which the “checkboxradio” function was triggered. A simple proof-of-concept can be

observed at reference [4].

With access to the source code the consultant used “grep” to find files which mentioned

“checkboxradio”:

grep -r -l "checkboxradio" report-uri

report-uri/public/cdn/libs/jqueryui/1.13.0/jquery-ui.min.js

Only the JavaScript file itself contained references to the vulnerable function. This was a good

indicator that the application was not vulnerable to attack. However, future development of the site

may introduce the vulnerability if the dependency is not updated.

 Confidential

 2710 - Report URI & API

 13

5.1.3 Risk Analysis

Pentest Risk

Category

CVSS 6.1/Medium

AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N

Explanation The CVSS rating was set using the NIST entry for CVE-2022-31160.

As this did not appear to be exploitable the consultant lowered the risk category

to “low”. Future development of the site may accidentally allow exploitation.

5.1.4 Recommendation

Pentest recommend applying the latest security updates to the affected software as made available

from the vendor's site.

The long-term recommendation would generally be to integrate checks that prevent future

deployment of vulnerable dependencies. With access to the project’s Git repository, it was clear that

this was already done by the “js_dep_check.yml” workflow. As this was the case the number of

outdated dependencies was small.

Investigate how an outdated dependency had not been detected prior to this penetration test. There

may be a gap in processes which could allow higher risk deviations in future.

5.1.5 References

[1] OWASP: A9 2017 - Using Components with Known Vulnerabilities

[2] CWE-1104: Use of Unmaintained Third Party Components

[3] CVE-2022-31160 - Cross-Site Scripting

[4] GitHub Security Advisories with PoC

5.1.6 Affected Item(s)

• https://report-uri.com/ - which loaded the script from the URL below:

o https://cdn.report-uri.com/libs/jqueryui/1.13.0/jquery-ui.min.js

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:N/UI:R/S:C/C:L/I:L/A:N
https://owasp.org/www-project-top-ten/2017/A9_2017-Using_Components_with_Known_Vulnerabilities
https://cwe.mitre.org/data/definitions/1104.html
https://nvd.nist.gov/vuln/detail/CVE-2022-31160
https://github.com/advisories/GHSA-h6gj-6jjq-h8g9
https://report-uri.com/
https://cdn.report-uri.com/libs/jqueryui/1.13.0/jquery-ui.min.js

 Confidential

 2710 - Report URI & API

 14

5.2 Account Enumeration

5.2.1 Background

Account Enumeration (also known as User Enumeration) is an issue that allows an

unauthenticated/authenticated user to determine a user’s account details (such as username or

email address) due to information returned by an application.

Oftentimes, it is the discrepancy between responses from applications such as on Forgotten

Password pages that allow attackers to determine the validity of user details. Examples of the types

of account enumeration methods are as follows:

• Response discrepancy

• URL redirection

• Forced browsing

Whatever the method used the impact of this is that a list of valid usernames and/or email addresses

can be created.

5.2.2 Details

On registering a new account there is an obvious difference in responses:

Condition Response

Email address already registered
HTTP/2 302 Found

Date: Fri, 25 Nov 2022 10:22:32 GMT

Content-Type: text/html; charset=utf-8

Location: /login/

Email address not registered
HTTP/2 302 Found

Date: Fri, 25 Nov 2022 10:18:42 GMT

Content-Type: text/html; charset=utf-8

Location: /account/

This is because a newly registered account is automatically authenticated before the email

verification process is completed.

The risk of this being exploited automatically was extremely low because:

• CAPTCHA Technology - the form was protected by a reCAPTCHA challenge.

• Rate Limiting – this defence exists to attackers coming from the Internet but for the duration

of the test was disabled for the consultant.

These are best practice defences which meant that an attacker would manually be enumerating user

accounts. The risk of this must simply be accepted because CAPTCHA challenges can always be

defeated by paying humans to defeat them. However, Report URI is unlikely to be targeted by threat

actors willing to do this.

Note: two other instances of user enumeration (in login and change email functions) were previously

reported and the risks of those were already accepted.

 Confidential

 2710 - Report URI & API

 15

5.2.3 Risk Analysis

Pentest Risk

Category

CVSS 3.7/Low

AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

Explanation The risk posed by this was low in the consultant’s opinion.

Due to there being a minor loss in confidentiality this resulted in a “low” risk

CVSS score even with the attack complexity set to high in this instance.

5.2.4 Recommendation

While exploitation of this was already challenging there remained an underlying risk on the

registration form. It is possible to remove this difference by:

1) Altering the registration flow to force users to verify their email address before authentication.

2) In situations where the account does not exist:

a. Email the user an activation URL.

b. Ideally this process should not introduce a detectable delay. This can be achieved

by sending the email in another thread and then redirecting as per 4) immediately

instead of waiting for the email to be sent before returning.

3) In situations where the account does exist:

a. Proceed straight to 4)

4) Redirecting the user to “/login” with the consistent message “Check your email and follow

the activation process before you can authenticate”.

5.2.5 References

[1] OWASP: Authentication Cheat Sheet

[2] Prevent account enumeration on login, reset password and registration pages

[3] How serious is Username enumeration

[4] CWE-200: Information Exposure

[5] CWE-203: Information Exposure Through Discrepancy

5.2.6 Affected Item(s)

• POST /register/

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N
https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html#authentication-and-error-messages
http://davecallan.com/web-security-account-enumeration-prevention/
https://www.developsec.com/2016/07/28/how-serious-is-username-enumeration/
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/203.html

 Confidential

 2710 - Report URI & API

 16

5.3 Server Side Request Forgery (SSRF)

5.3.1 Background

Server-Side Request Forgery (SSRF) is a vulnerability that describes the behaviour of a server

making a request that is under the attacker's control. When using a SSRF attack, an attacker can

induce the server to perform actions on their behalf.

Typically, SSRF attacks are a result of the target application having the functionality for importing

data from a URL or publishing data to a URL which can be tampered.

Using SSRF, an attacker an attacker may be able to connect to internal services which are not meant

to be exposed to external users. This can be used for port scanning, or data exfiltration depending

on the presentation.

5.3.2 Details

Report URI offer multiple features that can be used to trigger DNS, HTTP, and SMTP interactions

with arbitrarily specified hosts. This is the fingerprint of an SSRF vulnerability.

However, all instances were found to be legitimate features that customers require. No data

exfiltration or access to Internal resources was detected. There remained an obvious risk that an

attacker could abuse this in some way. For example, they could send traffic to arbitrary hosts which

may impact them by triggering a denial of service.

Even with that scenario in mind there were mitigations in place such as rate-limiting and Cloudflare

protection to discourage abuse.

The following shows a discussion of one SSRF instance in the “/home/generate_hash” endpoint. The

analysis provides context around what was possible through that feature.

5.3.2.1 HTTP Interaction via /home/generate_hash/

This feature was accessible while unauthenticated. It was designed to issue an HTTP request to any

Internet facing URL provided. The following shows the baseline request which would illicit the HTTP

request:

POST /home/generate_hash/ HTTP/2

Host: report-uri.com

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

Content-Length: 34

url=https://pr.x-pt.net/goingforit

The consultant started an HTTPS service using Python which received the request as shown:

python3 server.py

----- Request Start ----->

Host: pr.x-pt.net

User-Agent: Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/40.0.2214.93 Safari/537.36

Accept: */*

Referer: https://report-uri.com

Origin: https://report-uri.com

 Confidential

 2710 - Report URI & API

 17

<----- Request End -----

159.65.109.176 - - [23/Nov/2022 16:42:54] "GET /goingforit HTTP/1.1" 302 –

The HTTP request was issued from a Digital Ocean source IP address “159.65.109.176”. Repeating

the request would find different source IP addresses such as “167.99.96.229” and “159.65.109.215”.

All IPs were owned by Digital Ocean and the user agent was consistently the same indicating this

was triggered by the same code path.

The table below lists probes which elicited different errors and attempts to explain the meaning:

Probe Message Meaning

ftp://ftp.pentest.co.uk

Please enter a valid

address!

Protocol not allowed

http://www.pentest.co.uk

The server does not have

CORS enabled. This

resource can't be integrity

checked.

Protocol allowed.

DNS resolution successful.

Port was open and accessible.

Response did not include CORS

headers.

https://pr.x-pt.net/

Note: listener was ncat with

an invalid certificate, and it

would not respond to HTTP:

ncat –ssl -lvp 443

The operation timed out.

Make sure the site is up and

running and try again later.

Protocol allowed.

Port was open and accessible.

Response was not fast enough so

connection was closed by client.

https://pr.x-pt.net/

Note: listener was ncat with

an invalid certificate, but

which responded with a valid

200 OK was used:

printf 'HTTP/1.1 200

OK\r\nContent-Length:

2\r\nOK\r\n\r\n' | ncat --

ssl -lvp 443

Something went wrong

there! Maybe check the

URL and try again?

Port was open and accessible.

Possibly failed due to the

certificate being insecure.

https://pr.x-pt.net/

Note: listener was a python

HTTPS service using a valid

lets encrypt certificate.

The server does not have

CORS enabled. This

resource can't be integrity

checked.

Server did not support CORS and

so generate hash failed.

https://pr.x-pt.net/

This triggered a 500 Internal

Server Error which was

The suspected cause was that the

HTTPS service did not set the

 Confidential

 2710 - Report URI & API

 18

Probe Message Meaning

Note: valid python HTTPS

service with CORS header

set to:

Access-Control-Allow-

Origin: *

caught by CloudFlare

preventing the details being

disclosed.

correct “Content-Length”. Without

further access to the logs it was

impossible to confirm this.

https://pr.x-pt.net/

Note: valid python HTTPS

service with CORS header.

Which also set the “Content-

Length” header correctly.

The same 500 Internal

Server error as the previous

attempt.

This check seemed to disprove the

previous reasoning. It was

assumed that the “Content-Type”

may be necessary which had not

been set in this test.

https://pr.x-pt.net/

Note: same as the previous

attempt but with the additional

header:

Content-Type:

text/javascript

This test resulted in the

“generate_hash” function

working as intended.

This was the required

configuration for an HTTP server

to work with this tool.

https://pr.x-pt.net:9090/

We only support default

ports! Please remove the

port number and try again.

Protocol allowed.

Port 9090 was denied.

Using Burp Suite’s Intruder ports

1-1024 were attempted.

Same error shown for all ports

apart from 443 which said

“Something went wrong there!

Maybe check the URL and try

again?”. At the time no HTTPS

listener was enabled.

To access port 80 the protocol had

to be switched to “http://”.

https://192.168.0.1

Oops, something went

wrong! Check the URL and

try again

Local IP addresses were banned.

This was a previous finding by

pentest.

https://127.0.0.1

Oops, something went

wrong! Check the URL and

try again

Access to localhost over HTTPS

was not possible.

 Confidential

 2710 - Report URI & API

 19

Probe Message Meaning

http://127.0.0.1

Oops, something went

wrong! Check the URL and

try again

Access to localhost over HTTP

was not possible.

No access to Internal resources was detected.

Additionally, the consultant modified their HTTPS service to attempt 302 redirection such as this:

HTTP/1.0 302 Found

Server: BaseHTTP/0.6 Python/3.8.10

Date: Wed, 23 Nov 2022 23:19:52 GMT

Location: ftp://6dkty1vq0lkgwyaat4sbb3jnkeq5e12q.oastify.com/

No DNS request was issued for that domain so forcing a redirect did not allow the protocol to be

altered from HTTP/HTTPS to FTP.

It was possible to downgrade from HTTPS to HTTP via a redirect which may be logically undesirable

but did not seem exploitable.

It was not possible to bypass the port number restrictions using a redirect. This was an excellent

configuration as sometimes SSRF requests validate the first request but not the onward redirection.

The consultant had access to a list of internal IP addresses from a previous iteration of the project.

To confirm these could not be accessed Burp Suite’s Intruder was configured with two payload sets:

• Position 1 – The two strings “http” and “https”

• Position 2 – A list of IPv4 and IPv6 addresses

With the injection points shown below:

POST /home/generate_hash/ HTTP/2

Host: report-uri.com

Content-Type: application/x-www-form-urlencoded; charset=UTF-8

Content-Length: 23

url=<POSITION_1>://<POSITION_2>

No access to internal resources was proved.

 Confidential

 2710 - Report URI & API

 20

5.3.3 Risk Analysis

Pentest Risk

Category

CVSS 0.0/None

AV:N/AC:L/PR:L/UI:N/S:C/C:N/I:N/A:N

Explanation No access to internal resources was found on this occasion. There remains a

potential that Report URI’s service could be abused to send DoS traffic to third

party hosts. This may impact Report URI’s reputation if done.

It is also noteworthy that there is rate limiting and other measures in place which

would likely reduce the usefulness of the service for that purpose.

5.3.4 Recommendation

No impact to Report URI itself was detected on this occasion. The consultant has chosen to track

this risk to continue generating a discussion over it. This is because there is always an element of

risk involved in allowing external interaction.

The features on the “tools” menu could be protected further by adding CAPTCHA challenges to them.

There is relatively little impact to usability if a user solves a single CAPTCHA before accessing these

free tools legitimately. How often would a user legitimately need to access them? The answer was

presumed to be only occasionally. Whereas threat actors would seek to automate and abuse the

service and it would not be worth doing so if CAPTCHAs were enabled.

5.3.5 References

[1] OWASP - Server Side Request Forgery

[2] CWE-918 - SSRF

[3] OWASP - Cheat Sheet SSRF Prevention

5.3.6 Affected Item(s)

• POST /home/generate_hash/

• POST /home/analyse_url/

https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator?vector=AV:N/AC:L/PR:L/UI:N/S:C/C:N/I:N/A:N
https://www.owasp.org/index.php/Server_Side_Request_Forgery
https://cwe.mitre.org/data/definitions/918.html
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html

 Confidential

 2710 - Report URI & API

 21

6 Additional Information

6.1 WHOIS Database

The WHOIS database stores information about the individual or organisation who owns and

manages a domain or IP address range. Attackers will review WHOIS entries trying to find useful

information such as names and contact details for employees.

Best practices state that generic contact details should be used such as “whois@domain.com” rather

than providing the name of a member of staff.

6.1.1 Entry for Domain: report-uri.com

whois report-uri.com

 Domain Name: REPORT-URI.COM

 Registry Domain ID: 1651365076_DOMAIN_COM-VRSN

 Registrar WHOIS Server: whois.namecheap.com

 Registrar URL: http://www.namecheap.com

 Updated Date: 2022-03-18T07:43:44Z

 Creation Date: 2011-04-17T11:55:31Z

 Registry Expiry Date: 2023-04-17T11:55:31Z

 Registrar: NameCheap, Inc.

 Registrar IANA ID: 1068

 Registrar Abuse Contact Email: abuse@namecheap.com

 Registrar Abuse Contact Phone: +1.6613102107

 Domain Status: clientTransferProhibited https://icann.org/epp#clientTransferProhibited

 Name Server: CARL.NS.CLOUDFLARE.COM

 Name Server: COCO.NS.CLOUDFLARE.COM

 DNSSEC: signedDelegation

 DNSSEC DS Data: 2371 13 2

B86DC8BE786CAFA5B1D92F52AA23CD9B62AF70DBE9D907AC61A1F9469513B5F6

 URL of the ICANN Whois Inaccuracy Complaint Form: https://www.icann.org/wicf/

No personal information was disclosed in this.

Additionally, the above indicated that DNSSEC was enabled. This is rarely implemented, and it was

excellent to see that it had been enabled.

6.1.2 Entry for IP Address Range: 104.16.0.0 - 104.31.255.255

The target host “report-uri.com” was load balanced across five IP addresses. This was determined

by using “nslookup” in a bash for loop:

for i in `seq 1 100`; do dig +short report-uri.com; done | sort -u

104.17.182.88

104.17.183.88

104.17.184.88

104.17.185.88

104.17.186.88

https://www.icann.org/wicf/

 Confidential

 2710 - Report URI & API

 22

The target used Cloudflare as shown:

NetRange: 104.16.0.0 - 104.31.255.255

CIDR: 104.16.0.0/12

NetName: CLOUDFLARENET

NetHandle: NET-104-16-0-0-1

Parent: NET104 (NET-104-0-0-0-0)

NetType: Direct Allocation

OriginAS: AS13335

Organization: Cloudflare, Inc. (CLOUD14)

RegDate: 2014-03-28

Updated: 2021-05-26

Comment: All Cloudflare abuse reporting can be done via

https://www.cloudflare.com/abuse

Ref: https://rdap.arin.net/registry/ip/104.16.0.0

[...] Snip [...]

No personal information was disclosed in this configuration.

 Confidential

 2710 - Report URI & API

 23

6.2 DNS Reconnaissance

Domain Name Service (DNS) is used to translate human readable hostnames such as

“www.pentest.co.uk” to the IP address which is hard for humans to recall. Threat actors use DNS

reconnaissance to identify hosts which they can subsequently target.

6.2.1 Identifying DNS Servers for Domain: report-uri.com

The following shows the “dig” command being used to identify the name servers responsible for the

target domain:

dig ns report-uri.com

; <<>> DiG 9.16.1-Ubuntu <<>> ns report-uri.com

;; global options: +cmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 29999

;; flags: qr rd ra; QUERY: 1, ANSWER: 2, AUTHORITY: 0, ADDITIONAL: 1

;; OPT PSEUDOSECTION:

; EDNS: version: 0, flags:; udp: 65494

;; QUESTION SECTION:

;report-uri.com. IN NS

;; ANSWER SECTION:

report-uri.com. 120 IN NS carl.ns.cloudflare.com.

report-uri.com. 120 IN NS coco.ns.cloudflare.com.

The target used Cloudflare’s DNS service which is designed to be “always available” and has

integrated support for DDoS and DNSSEC.

This was an excellent configuration and would likely ensure the availability of DNS.

 Confidential

 2710 - Report URI & API

 24

6.2.2 DNS Server Configurations

The following table summarises common insecure configurations. The data was gathered by

assessing each of the NS servers listed above:

Check Outcome

Zone Transfers Disabled Transfer failed

DNSSEC Enabled DNSSEC was enabled.

Recursive Queries Disabled Cloudflare’s DNS servers allowed recursive queries. This may

enable DNS amplification attacks.

Based on the information at this URL they prevent incoming

DDoS via DNS amplification:

https://www.cloudflare.com/en-gb/learning/ddos/dns-

amplification-ddos-attack/

No information was found about how they prevent their name

servers being used in an attack against another infrastructure.

Table 1 - DNS Server Configuration Analysis

https://www.cloudflare.com/en-gb/learning/ddos/dns-amplification-ddos-attack/
https://www.cloudflare.com/en-gb/learning/ddos/dns-amplification-ddos-attack/

 Confidential

 2710 - Report URI & API

 25

6.2.3 List of known hostnames at Domain: report-uri.com

DNS wildcards were used such that all subdomains will point to one of the five IP addresses below:

104.17.184.88

104.17.185.88

104.17.186.88

104.17.183.88

104.17.182.88

A brute force did not find any additional hostnames for any other IP address.

 Confidential

 2710 - Report URI & API

 26

6.3 Port Scan Results

To offer a service to other computers, a “port” is made available. Each open port creates a

communication channel which can pose a security risk that an attacker can enumerate information

from, or at worst exploit to compromise the target.

Best practices state that only the minimum number of open ports should be enabled to reduce the

attack surface.

6.3.1 Target: 104.17.183.88 - report-uri.com

Port State Service Product Version Extra

80/tcp open http cloudflare Unknown Unknown

443/tcp open https cloudflare Unknown Unknown

2052/tcp open clearvisn Unknown Unknown Unknown

2053/tcp open http nginx Unknown Unknown

2082/tcp open infowave Unknown Unknown Unknown

2083/tcp open http nginx Unknown Unknown

2086/tcp open gnunet Unknown Unknown Unknown

2087/tcp open http nginx Unknown Unknown

2095/tcp open nbx-ser Unknown Unknown Unknown

2096/tcp open http nginx Unknown Unknown

8080/tcp open http-proxy cloudflare Unknown Unknown

8443/tcp open https-alt cloudflare Unknown Unknown

8880/tcp open cddbp-alt Unknown Unknown Unknown

The above is a typical footprint for a server fronted by CloudFlare.

 Confidential

 2710 - Report URI & API

 27

6.4 SSL/TLS Assessment

Transport Layer Security (TLS) is used to ensure the confidentiality and integrity of traffic as it transits

a network. It is also used to give certainty of the identity of the client, server, or both. Insecure

configurations are common. The following sub-sections show information gathered using SSLScan.

6.4.1 SSLScan Results for: report-uri.com – TCP/443

Testing SSL server report-uri.com on port 443 using SNI name report-uri.com

 SSL/TLS Protocols:

SSLv2 disabled

SSLv3 disabled

TLSv1.0 disabled

TLSv1.1 disabled

TLSv1.2 enabled

TLSv1.3 enabled

 TLS Fallback SCSV:

Server supports TLS Fallback SCSV

 TLS renegotiation:

Session renegotiation not supported

 TLS Compression:

Compression disabled

 Heartbleed:

TLSv1.3 not vulnerable to heartbleed

TLSv1.2 not vulnerable to heartbleed

 Supported Server Cipher(s):

Preferred TLSv1.3 128 bits TLS_AES_128_GCM_SHA256 Curve 25519 DHE 253

Accepted TLSv1.3 256 bits TLS_AES_256_GCM_SHA384 Curve 25519 DHE 253

Accepted TLSv1.3 256 bits TLS_CHACHA20_POLY1305_SHA256 Curve 25519 DHE 253

Preferred TLSv1.2 256 bits ECDHE-ECDSA-CHACHA20-POLY1305 Curve 25519 DHE 253

Accepted TLSv1.2 128 bits ECDHE-ECDSA-AES128-GCM-SHA256 Curve 25519 DHE 253

Accepted TLSv1.2 128 bits ECDHE-ECDSA-AES128-SHA Curve 25519 DHE 253

Accepted TLSv1.2 256 bits ECDHE-ECDSA-AES256-GCM-SHA384 Curve 25519 DHE 253

Accepted TLSv1.2 256 bits ECDHE-ECDSA-AES256-SHA Curve 25519 DHE 253

Accepted TLSv1.2 128 bits ECDHE-ECDSA-AES128-SHA256 Curve 25519 DHE 253

Accepted TLSv1.2 256 bits ECDHE-ECDSA-AES256-SHA384 Curve 25519 DHE 253

Accepted TLSv1.2 256 bits ECDHE-RSA-CHACHA20-POLY1305 Curve 25519 DHE 253

Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-GCM-SHA256 Curve 25519 DHE 253

Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-SHA Curve 25519 DHE 253

Accepted TLSv1.2 128 bits AES128-GCM-SHA256

Accepted TLSv1.2 128 bits AES128-SHA

Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-GCM-SHA384 Curve 25519 DHE 253

Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-SHA Curve 25519 DHE 253

Accepted TLSv1.2 256 bits AES256-GCM-SHA384

Accepted TLSv1.2 256 bits AES256-SHA

Accepted TLSv1.2 128 bits ECDHE-RSA-AES128-SHA256 Curve 25519 DHE 253

Accepted TLSv1.2 128 bits AES128-SHA256

Accepted TLSv1.2 256 bits ECDHE-RSA-AES256-SHA384 Curve 25519 DHE 253

Accepted TLSv1.2 256 bits AES256-SHA256

 Server Key Exchange Group(s):

TLSv1.3 128 bits secp256r1 (NIST P-256)

TLSv1.3 192 bits secp384r1 (NIST P-384)

TLSv1.3 260 bits secp521r1 (NIST P-521)

TLSv1.3 128 bits x25519

TLSv1.2 128 bits secp256r1 (NIST P-256)

TLSv1.2 192 bits secp384r1 (NIST P-384)

TLSv1.2 260 bits secp521r1 (NIST P-521)

TLSv1.2 128 bits x25519

 SSL Certificate:

Signature Algorithm: ecdsa-with-SHA384

ECC Curve Name: prime256v1

ECC Key Strength: 128

Subject: *.report-uri.com

Altnames: DNS:*.report-uri.com, DNS:report-uri.com

Issuer: E1

Not valid before: Nov 24 09:12:02 2022 GMT

Not valid after: Feb 22 09:12:01 2023 GMT

No vulnerabilities were detected in the TLS configuration.

 Confidential

 2710 - Report URI & API

 28

Appendix A. Testing Notes

A1. Source Code Analysis

Access to a private GitHub repository was provided. The code from the “master” branch was said to

be what was deployed currently so the zip file was obtained and used.

This project was not a complete secure code review in the sense that the entire code base was to

be read and validated. Instead, the code was generally used to aid otherwise black-box testing.

However, the following steps were followed:

• Static code analysis tools (VisualCodeGrepper, and semgrep) were used to point towards

potential flaws.

• Manual analysis of a few “hits” for each category of vulnerability was conducted.

Any vulnerabilities were raised in the body of this report.

A2. Dependency Checking

With access to the source code the consultant used OWASP’s dependency-check to scan for known

vulnerabilities in supporting libraries:

dependency-check.bat --project report-uri -s

D:\work\Projects\2710_ReportUri\source\report-uri -f ALL

This detected one outdated dependency:

Figure 1 - Outdated version of jquery-ui.min.js

The same outdated dependency was also detectable using black-box techniques.

This was evidence that supporting libraries were generally updated and did not indicate a pattern of

insecure practice.

 Confidential

 2710 - Report URI & API

 29

A3. GitHub Repository Secrets Hunting

With access to the git repository analysis the consultant used “gitleaks” to check for potential secrets

within the git repository. This was done using

docker run -v ./source/report-uri:/path zricethezav/gitleaks:latest detect --

source="/path" -v -r /path/gitleaksecrets.json -f json --no-git

[...]

3:04PM INF scan completed in 12.7s

3:04PM WRN leaks found: 8

Note: “—no-git” meant no checks focused on the files as they were currently committed and did not

check previous versions of files.

Several of these gits were due to the application processing public and private key files. The string

used to match a secret was a false positive in these cases since they were not hard coded certificates

which would pose a risk if leaked.

A few more were API keys which existed inside test classes. These also did not pose a risk as they

were test API keys.

No exposure was detected as a result of this.

 Confidential

 2710 - Report URI & API

 30

A4. Bug Hunting in Pem Decoder [Not Vulnerable]

URL: https://report-uri.com/home/pem_decoder/

This feature offered to decode pem files and display them on screen within the target domain. It was

also not protected by a CSRF token making it possible to exploit XSS by CSRF if such a vulnerability

existed.

To test this function a pem file must be generated. Initially this was done by using “openssl”:

openssl req -newkey rsa:2048 -new -nodes -x509 -days 3650 -keyout key.pem -out cert.pem

You are about to be asked to enter information that will be incorporated

into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.

There are quite a few fields but you can leave some blank

For some fields there will be a default value,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:aa

State or Province Name (full name) [Some-State]:bb

Locality Name (eg, city) []:cc

Organization Name (eg, company) [Internet Widgits Pty Ltd]:dd

Organizational Unit Name (eg, section) []:ee

Common Name (e.g. server FQDN or YOUR name) []:<xss>

Email Address []:ff

A simple XSS probe was provided in the “Common Name” field:

Figure 2 - Probe as Displayed in Browser

The probe was inert as displayed. This was because the server’s response had HTML entity

encoded:

Common Name: <xss>

While using output encoding like this is secure. The most secure approach is to reject requests

containing inappropriate input. Attempts to sanitise input can often be bypassed (though this was

unlikely in this context).

To assess this further URL encoding was used for the common name to produce the probe as:

Unencoded: <xss>

URL Encoded: %3c%78%73%73%3e

https://report-uri.com/home/pem_decoder/

 Confidential

 2710 - Report URI & API

 31

The application handled this Pem file securely and no vulnerability was detected.

While nothing exploitable was detected the endpoint could improve its security by:

• Requiring a CSRF token.

• Not rendering certificates where the data fields do not match expected input patterns.

A5. Automated Application Scanning Challenges

The site used a CSRF token which was submitted as both a session cookie and post body parameter.

This token changed with every request and had a built-in timeout feature as well making them

automatically invalid.

Without configuring Burp suite appropriately this would result in inaccurate results as scans would

present requests determined as invalid which may be protecting the underlying function.

Note: Attackers from the Internet would have a tougher time as they would also contend with

Cloudflare and rate-limiting meaning that this section is not a recipe for how to automate an effective

attack against Report URI.

The consultant used the “Stepper” (an extender for Burp Suite) to allow automated scanning. This

was configured to gather a new CSRF token and derive a post response variable called “csrf”.

This was then added to requests in repeater. For example, the following shows a configuration used

for the “/team/create_team” endpoint:

POST /team/create_team/ HTTP/2

Host: report-uri.com

Cookie: _nss=1; __Host-report_uri_sess=e7f6tfj83t0c9pu72qubbf2nd0; __Host-

report_uri_csrf=$VAR:2:csrf$; __cf_bm=bB4RNxpq9wSx1p.k1jNw8tFxXeWAyAhmTVQQ2AvfeBA-

1669115982-0-

AaPjHWFB2iNfdhVyOBVILKtDPLlV71xVwpRWGfcbi/CyWYJSELGIBL4a8UJKCXZOuhSNK3DWGFXkMe4J4UzEvD4=

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:98.0) Gecko/20100101

FirefoxXSS/98.0 [PenTestA]

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: https://report-uri.com/account/teams/

Content-Type: application/x-www-form-urlencoded

Content-Length: 33

Origin: https://report-uri.com

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: same-origin

Sec-Fetch-User: ?1

Te: trailers

X-Stepper-Execute-Before: 2

csrf_token=$VAR:2:csrf$&name=test

Note the “X-Stepper-Execute-Before” header was added to trigger the sequence called “2”. The

highlighted variables show where the “csrf” variable was injected.

With this configured it was possible to use Burp Suite’s repeater to manually alter the “name”

parameter and to confirm that new teams had been created.

 Confidential

 2710 - Report URI & API

 32

The consultant used Burp Suite’s Intruder feature to probe for SQL Injection. By using intruder, it

was easy to see the HTTP responses for each probe to monitor that the process was working as

intended. During this process various responses were detected:

Code Summary

302 to “/account/teams” The request was valid and handled by the server.

403 with the message “Sorry, you have

been blocked”

Cloudflare had blocked the request.

The above indicated that Cloudflare was likely rate limiting the number of automated requests making

it harder to find underlying weaknesses.

During this automated check if the consultant browsed to the “/account/teams” URL a different

response was observed:

Figure 3 - Server Error

This error persisted long after the Intruder scan had been completed. The following shows part of

the HTML source:

Figure 4 - Cloudflare

Scott Helme confirmed that the “tracy-error” was likely coming from the target server and not from

Cloudflare. This error denied access to the feature for the duration of the test within the privileges of

that user account. It had no impact on other users. This error may have obscured a vulnerability, but

it was unknown what that would be.

 Confidential

 2710 - Report URI & API

 33

That user account was then unable to authenticate to the application without causing an error and

all HTTP post requests after login resulted in the same 500 error page. This was likely due to an

error where the user’s teams were retrieved. Any part of the site that needed to do this was

inaccessible. It was not possible to proceed with testing using this account.

The consultant registered a new account and then used the same Stepper configuration to scan the

“/account/ct_filters” endpoint. The baseline request for Burp’s Intruder is shown below:

POST /account/ct_filters/ HTTP/2

Host: report-uri.com

Cookie: _nss=1; __Host-report_uri_csrf=$VAR:3:csrf$; __Host-

report_uri_sess=2nr0a4kur04iebthctkcar6857;

__cf_bm=YtURNrK6jxAIqqw7UHpJdUbRR8jHPjQFaOaItsoP9bA-1669133712-0-

AZ3n/KaM+Hwk63eh4pvcZUuvRUJ00hSZryfkvsqNjvawSil+tBzibHBnyamMSj58U3foIDu3IK6iMV7BeGUZcqM=

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:98.0) Gecko/20100101

FirefoxXSS/98.0 [paulr2]

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate

Referer: https://report-uri.com/account/filters/

Content-Type: application/x-www-form-urlencoded

Content-Length: 35

Origin: https://report-uri.com

Upgrade-Insecure-Requests: 1

Sec-Fetch-Dest: document

Sec-Fetch-Mode: navigate

Sec-Fetch-Site: same-origin

Sec-Fetch-User: ?1

Te: trailers

X-Stepper-Execute-Before: 3

Connection: close

csrf_token=$VAR:3:csrf$&ctHosts=<INJECT_HERE>

Using the default “fuzzing full” word list worked without causing the same error as discussed

previously. The process found that input validation of the “ctHosts” parameter was robust, and all

probes triggered an error about the format:

Figure 5 - Intruder Showing Some Responses with the input validation error

The following shows how the error appeared rendered in a browser:

 Confidential

 2710 - Report URI & API

 34

Figure 6 - "The collect hosts string contained invalid characters"

This filter was not bypassed, and no risk was determined.

This section has discussed how automation was configured to enable it to find results. After the first

endpoint (“/teams/create_team”) presented with problems, the consultant documented similar work

on “/account/ct_filters” to confirm that the process was generally working for scanning.

No additional effort to document how things would be setup was made and instead any vulnerabilities

would be documented.

26a, The Downs

Altrincham

Cheshire

WA14 2PU

+44 (0)161 233 0100

